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Abstract

We present a navigatior_al tool for computational grids. The navigational process is based on measuring the
grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid
application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution of
a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid
and show how it can be measured by NGB. Then we demonstrate how the gridscape can be used with two different

schedulers to navigate a grid application through a rudimentary grid.
Keywords: computational grids, navigation, benchmarks

1 Introduction

Computational and data grids 16, 13] provide environments where users can run distributed applications and work

with distributed data. Dynamically changing grid resources, a variety of access policies, and interference with other

grid users make it difficult to keep track of the tasks of a grid application and to navigate the application through the

grid. One approach to navigate t on the grid is to rely on a meta-scheduler (or a superscheduler, cf. [20]) which will
schedule the tasks of the application. This is not sufficient for a navigation to be successful since resource scheduling

has different objective function than the application turnaround time. Our approach to navigation is user centric:

obtain a map of the grid and then assign tasks of the application to the appropriate grid machines using a scheduling

algorithm.
The problem of navigation ,)f distributed applications has been a subject of scheduling research since the appear-

ance of distributed systems and has significantly intensified with development of computational grids. The scheduling

component of the navigation was formulated and partially addressed in early grid works [26, 25], where a schedul-

ing mechanism was embedded into the application. It was realized that "a grid programmer cannot rely on resource

schedulers or other system components to promote application performance goals" [26, p. 280]. We will discuss more

related projects in the final verion of the paper.
We show that navigation of data flow grid applications can be accomplished with a gridscape - a map of the

grid resources. The static component of the gridscape can be obtained using grid information services. Then the

IWeuse term "navigate" according to the definitionof Merriam-Webster's Collegiate Dictionary: navigate - to steer a course through a medium.



gridscapecanbedetailedwithdynamic,applicationspecificinformationmeasuredbymeansofNASGridBenchmarks
(NGB).TodemonstratetheefficiencyofthisnavigationprocessweimplementaNavigationPadthatprovidesallbasic
navigationalcapabilitiesofobservingthegridscape,schedulingandmonitoringgridapplications.Wedemonstratethe
navigationprocessinarudimentarygridusinganimplementationofNGBinJavaandFortran.

2 The Navigational Cycle

To run, or rather to navigate, an application in a grid environment, the users should be able to obtain a gridscape, a

map of the grid, and update it at the time they are making decisions about requesting grid resources. The user's ability
to make an informed decision on the choice of the appropriate grid resources and to avoid details having insignificant

effects on the application turnaround time depends on the resolution of the gridscape. Since the grid is comprised of

multiple resources whose load and properties are changing dynamically then the gridscape should be dynamic so that

the user wilt have a good chance te request and obtain the best available resource.

For a grid application comwised of a number of coarse computationally intensive tasks or components communi-

cating through ports the navigating process can be accomplished by iterating the navigational cycle of Figure I.
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Figure 1: Navigational cycle on the grid. The static gridscape and application performance profile are generated

offline by a user. The iterations of the navigational cycle can be executed automatically by a navigational tool.

In this paper we focus on the first step of the navigational cycle: obtaining an up-to-date gridscape. For demon-

strating the navigational process we use two basic schedulers and the reporting capabilities of NGB to monitor the
tasks.

The iterations of the navigational cycle require updating short-lived gridscape information. The initial iteration

requires detailed information about machines, number of processors, memory, disk space, directory structure, OSs,

availability of software and libraries used by the tasks, and network latency. This detailed static information may be
obtained off-line before the grid application has started. For the subsequent iterations of the navigational cycle, less



detailedbutdynamicinformationaboutactualnumberofavailableprocessors,memorysizeandnetworkbandwidth
isnecessary.

Thereareanumberof waystheusercanobtainthestaticcomponentofthegridscapeincluding/dapsearch,

grid-info-search, or recently developed MDS-2 which implements the GRIP protocol [20]. Architecture spe-

cific monitoring commands such as df, ps, hinv (IRIX) or psrinfo (SolarisTS8) can be used if the user has detailed

information about grid machines. The gridscape obtained in this way, however, is insufficient for reliable navigation

since it may be stale, inaccurate or nonspecific about some services required by the application. For reliable naviga-

tion of a grid application, a current gridscape is necessary. The dynamic component of the gridscape can partially be
obtained with another set of tools such as Network Weather Service (NWS), MDS-2 or LSF, [23] or machine specific

performance monitoring tools such as top (IRIX) or cpus tat (Solarise8).
In this paper we show how to obtain the most recent gridscape by using the NGB [19]. The NGB tasks are indi-

vidual instances of the NPB, hence, performance, scalability, and communication requirements of any NGB instance

can be easily obtained, making NGB a unique tool for measuring the gridscape. Briefly, our approach is as follows.

First we use the parameter study benchmark (ED) to validate the gridscape obtained by grid-info-search. To
do this we run a serial version of ED an all machines in the gridscape and reduce it to the set of functioning machines

where appropriate services are installed. Then we run a multithreaded version of ED (OpenMP in Fortran version [4]
or multithreaded Java version ['i]) to obtain the available number of processors on the grid machines and then we sort

the machines according to the actual performance. Next we thread a chain of sequential communicating processes
(HC) across the chosen machines to test network connectivity and bandwidth and update bandwidth information in the

gridscape. Finally, the gridscape is used in the navigational cycle to assign application tasks to the grid machines.

3 Observing the Gridscape

Logically computational grid can be veiwed at as a set of basic services necessary and sufficient for running applica-

tions on the grid, such as authet._ticate, create task, communicate, see [6, p. 37]. On the physical level this logical view

is supported by actual computers, storage devices and networks, see Figure 2. The grid application turnaround time

depends on how well the physi.-al layer is able to execute assigned tasks and communicate requests/results between
tasks. The user's view of the pilysical layer of the grid, the gridscape, includes such characteristics as the computer

performance, number of proces:_ors, disk and memory capacities, network latencies and bandwidth.
As a formalization of gridscape in this paper we use an abstract graph representation of the grid, we call this

representation a gridscape as well. Nodes of the graph are either machines or networks and arcs are interconnections
between machines or between machines and networks, see Figure 3. Each graph node/arc of the gridscape stores

observed information about machine/interconnection, such as name, number of processors, processor speed, latency

and bandwidth.

The process of observing the grid and recording the information in the gridscape we call mapping. We map the grid

in two steps. First, we use Globus grid-info-search to obtain basic information about machines and networks
which can be used to run the application. Second, we use NGB to obtain current information about the grid such as

machines/services status and actual performance and bandwidth. Results of the observations of both steps are recorded

in the gridscape in terms of performance, number of processors, memory size, and disc capacity of the grid machines,

and latency and bandwidth of communication links between machines, some of which are shown symbolically at

Figure 3.

Observation of the gridscape has to be performed in the presence of the varying grid load, which distorts the

observation. Depending on the speed of changing of the gridscape we distinguish between volatile and stable grids. In

a stable grid during application run the gridscape varies by a factor which does not exceeds a user defined threshold.

This threshold depends on the user requirements of the application turnaround time. If the grid is stable then a
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Figure 2: A physical map of a rudimentary grid. The network configuration was provided by a network administra-

tor.

gridscape can be obtained once, while in volatile a grid the gridscape must be updated before assignment and launching

each task. In Figure 4 we see that if the threshold is 3 then the grid can be considered as stable, otherwise it should be

treated as volatile.

4 Navigation on the Grid

With the knowledge of the gri&+cape, a user can make informed decisions about choosing grid resources and assign-

ing the tasks to minimize the application turnaround time. The gridscape can be used to extrapolate an application

performance profile, or model in terms of [26], that is requirements in number of FLOPS and communication volume,

to actual time requirements for grid machines and networks. This extrapolated performance in terms of execution

time and communication delays then may be used by a scheduling algorithm to schedule the grid application. To

Net
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Figure 3: Gridscape of the rudimentary grid. The width of the rectangles representing the grid machines are

proportional to the number of processors, the height is proportional to the clock rate. Width/length of a network link

reflects its bandwidth/latency. The measurement process is described in Section 5.
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Figure 4: Monitoring of ED.S (Java). The benchmark was executed every 15 minutes over a i0 hour period on a

rudimentary grid. The turnarotmd time of ED.S (Fortran) has amplitude smaller by a factor of 5 but exhibits similar

volatility.

demonstrate navigation with the gridscape we use two scheduling algorithms: a greedy scheduler [18] and a critical

path scheduler [27, 19]. Results of an experimental navigation are presented in the next section.
As a performance profile of a grid application, basic information about computational demand (say in seconds on

a specific machine) for each ta,',k and amount of the data sent along each arc can be used [26]. With a gridscape the

application performance profile can be extrapolated to all grid resources. The extrapolated performance then can be
used to estimate the height of each task. Informally the height of a task is the shortest time from starting the task

till completion of the application. The heights of tasks are used by both the critical path and the greedy schedulers
described at the end of the section to assign tasks to grid machines giving higher tasks higher priority.

Specifically, a grid application we represent by a data flow graph G = (V, A) which nodes are tasks and arcs are
communications between tasks We translate the application performance profile to the weight of nodes and lengths

of arcs. For each node we assign weight to be execution time of the appropriate task on the fastest grid machine. For

each arc we assign length to be average time of sending data from arc's tail task to arc's head task. Since G is acyclic

directed graph we can estimate the heights of the nodes by the algorithm depicted at Figure 5.

Now we briefly describe two scheduling algorithms we use to demonstrate the navigation process. We do not make

any conclusions about either the relative efficiency of the schedules obtained with these algorithms or about how close

to the optimum these schedules are. Our goal here is to demonstrate that navigation with the gridscape is faster than

assignment of tasks to grid machines in a Round Robin fashion.
The Greedy Scheduler assigns for execution the ready node of maximum height. A node is defined to be "ready"

if data form all it's predecessors are available. It can be shown that the greedy scheduler gives provably efficient

schedules for a number classes of task graphs [18].

The Critical Path Scheduler assigns tasks of a critical path (path of the maximum height) to a fastest grid machine.

Then the tasks of the critical path of the graph of remaining tasks are assigned to the second fastest grid machine etc.

When the list of free grid machines is exhausted the next critical path is assigned to the first grid machine and so on,

cf. [19].
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Figure 5: Algorithm for computing node height. Informally, height of a node is the shortest time between start of
the node task and finish of the _hole application.

5 Experimental Navigation

We installed the NGB services on a compact grid comprising 4 machines at NAS: a 32-processor SGI Origin 2000

(O2K), a 16-processor SUN E 10000 (E10K), a 4-processor SUN Ultra-4 (U4), and a 2-processor SUN Ultra-60 (U60).

The machines were connected by fast, switched Ethernet supplemented with some Gigabit Ethernet connections, see

Figure 2. The NGB Pad was launched from on a 850 MHz laptop (PC850) running Windows2000 accessing the grid

machines through switched Ethernet and a wireless network connected to an outside router.

First the gridscape of our rudimentary grid was measured by ED.S (Fortran), see top of right panel of Figure
8. Then the bandwidth of the network was estimated via HC.W and it was found that the grid average bandwidth

is 2.49 MB/s, see Table 1. Then we used OpenMP version of ED.A (Fortran) to check how many processors are

actually available, see Table 2. l'he the estimations of the number of processors were calculated from ideal speedup

curves are shown on Figures 6. 7 and the ED.A (Fortran) turnaround time with requested number of threads equal

to the number of machine processors. Then we used the gridscape to schedule VP.W and MB.W both in Java. An

application performance profile of these benchmarks was based on the NPB performance model and on the size of
data communicated between nodes.

The navigation results of VP W and MB.W (both in Java) are shown in Figures 8 and 9 respectively. The turnaround
time shown at the bottom of the right panel include two sets of runs for each benchmark. Each set includes runs of the

benchmarks scheduled with Round Robin, Critical Path and Greedy schedulers. The results imply that the navigation

in our rudimentary grid can improve application turnaround time by 20%.

6 Related Work and Conclusions

In the final version of the papel we will discuss the folowing projects: Globus Heart Beat Monitor [12] (part of the

Globus [7] metacomputing toolkil), the Network Weather Service [11], the grid simulation projects WARMstones [3],



Table1: Measured network bandwidth between the grid machines (MB/s). The bandwidth was measured with

HC.W benchmark with messages in size in range 0.55-1.87 MB. The benchmark uses Java client-server architecture

based on HTTP protocol. The number of measurements was in range 2-6 and the standard deviation is shown in

parentheses.

[ From,q'o

O_4KU60

[____0K

U60 U4 O2K EIOK

2.97 (1.45) 3.48 (0.88) 1.71 (0.13) 3.13 (0.41)

3.64 (0.95) 2.97 (0.70) 2.37 (0.30) 3.24 (0.44)

0.75 (0.11) 2.20 (0.27) 1.40 (0.08) 2.21 (0.84)

2.86 (0.46) 2.60 (1.04) 1.67 (0.22) 2.67 (0.34)

Table 2: The observation of effective number of processors of the grid machines. The observation was performed

with OpcnMP vcrsion of ED.S and for estimation the number processors we use curve of 7.
Machine Number of Clock Rate Observed Estimated Number of

Processors (MHz) Speedup Processors

U60 2 450

U4 4 400

O2K 32 250 7.48 10.47

E10K 16 333 2.03 1.96

MicroGrid [2], and Bricks [10], application steering SCIRun [22t, and application scheduling APPLES [25]

The navigation system proposed in this paper allows the user to acquire a map of the grid, which we call a gridscape

and to assign tasks of a grid application to the grid machines in order to finish the application in shortest possible time.

The advantages of our approach are similar to the advantages of using personal car relative to using a taxicab. It allows

the user to keep full control over tasks and to choose the best resources for the tasks based on the current situation

on the grid, and as result, to decrease application turnaround time. On the other hand it requires some effort on the

user's side. Specifically, it requires an estimation of the application performance profile and the use of off-the-shelf
schedulers.
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Figure 8: The turnaround time of VP.W (Java). The benchmark was scheduled with the Round Robin task assign-

ment (shown), with the Critical Path and Greedy schedulers. The two sets of vertical bars on the right panel show

turnaround time for two sets of runs of VP.W scheduled with these three schedulers. For example, the two Round

Robin task assignment runs took 33.9 and 32.1 seconds.

10



Embarrassingly Distributed instance = ./dfg/MB.W:vc

FT,W_8.O2K.rm&sa,gou

Figure 9: Navigation results of MB.W (Java).
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